Сопротивление материалов

Теоретическая механика Сопротивление материалов

Рациональные сечения при изгибе

Определим рациональные сечения при изгибе, для этого срав­ним моменты сопротивления простейших сечений.

Осевой момент инерции прямоугольника (рис. 32.4) равен .

Осевой момент сопротивления  прямо­угольника

.

Сравним сопротивление изгибу двух прямоугольных сечений (рис. 32.5).

Рис. 32.4

Рис. 32.5 Шероховатость поверхности Нормирование шероховатости поверхности >Все повеpхности любой детали, независимо от способа их получения, имеют макpо- и микpонеpовности в виде выступов и впадин. Эти неpовности, фоpмиpующие pельеф повеpхности и опpеделяющие ее качество, называют шеpоховатостью повеpхности.

Вариант на рис. 32.56 обладает большим сопротивлением изги­бу при прочих равных условиях.

Осевой момент инерции круга (рис. 32.6) равен .

Осевой момент сопротивления круга .

Рис. 32.6

Все необходимые расчетные данные (площади, моменты инер­ции и сопротивления) стандартных сечений приводятся в таблицах стандартов (Приложение 1).

Для материалов, одинаково работающих на растяжение и сжа­тие, выбирают сечения, симметричные относительно оси, вокруг ко­торой совершается изгиб (рис. 32.7).

Пример

Сравним моменты сопротивления двух сечений одинаковой пло­щади: двутавра (рис. 32.7г) и круга (рис. 32.7а).

Двутавр № 10 имеет площадь 12 см2, осевой момент инерции 198 см4, момент сопротивления 39,7 см3.

Круг той же площади имеет диаметр , осевой момент инерции Jx = 25,12 см4, момент сопротивления Wx = 6,2 см3.

.

Сопротивление изгибу у двутавровой балки в шесть раз выше, чем у балки круглого сечения.

Из этого примера можно сделать вывод: сечения прямо­угольные, квадратные, круглые и ромбовидные нерациональны (рис. 32.7а, б).

Рис. 32.7

Для материалов, обладающих разной прочностью при растяже­нии и сжатии (хрупкие материалы обладают значительно большей прочностью на сжатие, чем на растяжение), выбирают асимметрич­ные сечения тавр, рельс и др.


Механические свойства материалов Растяжение и сжатие. Продольные и поперечные деформации