Вычисление кратных интегралов Задачи и примеры

Энергия плоского конденсатора Физика лабораторные работы
Инженерная графика
Начертательная геометрия
Техническая механика
Сопротивление материалов
Выполнение чертежей в КОМПАС-3D
Системы автоматизированного проектирования
Машиностроительное черчение
Математика Примеры решения задач
Математический анализ
Контрольная по математике
Матрицы
Сложение матриц
Матричные уравнения
Пределы
Предел функции
Вычислить предел
Элементы теории множеств
Производная и дифференциал
Неопределенный интеграл
интегрирование по частям
Изменить порядок интегрирования
Интегрирование тригонометрических
выражений
Определенные интегралы
Функции нескольких переменных
Двойной интеграл
ОДУ первого порядка
Вычислить длину астроиды
Уравнения в полных дифференциалах.
ОДУ высших порядков
Вычислить интегралы
Вычислить криволинейный интеграл
Исследовать поведение функции
Примеры решения и оформления задач
контрольной работы
Вычисление длины дуги кривой
Вычислить тройной интеграл
Математика примеры Метод Лагранжа
Масса неоднородного тела
Цилиндрические координаты
Вычислим объем шара
Объём цилиндрического тела
Криволинейный интеграл
Формула Грина
Поверхностный интеграл
Функция нескольких переменных
Экстремумы ФНП
Скалярное поле
Функции комплексной переменной
Вычисление кратных интегралов
Декартовы координаты
Векторное поле
Вычислить работу силы
интегрирование подстановкой
Диффенцируемость ФНП
Локальный экстремум ФНП
Некоторые свойства интеграла ФНП
Производная функции в точке
Правило Лопиталя
Информатика
Microsoft Lync 2013
Курс лекций по Microsoft access
Контрольные работы по ACCESS
Микропроцессор
Технологии защиты информации в сети
Электротехника курсовая работа
Промышленная электроника
Введение в цифровую электронику
Курс лекций по физике
Физические основы механики
Третий закон Ньютона
Закон сохранения импульса
Закон сохранения энергии
Сила тяжести и вес
Движение тел в жидкостях и газах
Закон взаимосвязи массы и энергии
Основы молекулярной физики
и термодинамики
Молекулярно-кинетическая теория
Основы термодинамики
Адиабатический процесс
Второе начало термодинамики
Тепловые двигатели
Капиллярные явления
Теплоемкость твердых тел
Электричество и электромагнетизм
Электростатика
Принцип суперпозиции
Теорема Гаусса
Потенциал электростатического поля
Типы диэлектриков
Сегнетоэлектрики
Проводники в электростатическом поле
Постоянный электрический ток
Магнитное поле
История искусства
Эпоха становления русской живописи
Чудотворные иконы
Царские и шамилевские крепости в Дагестане
Бахчисарай и дворцы Крыма
Образы Италии XXI века
Культура и искусство доисторической эпохи
Культура христианской эпохи
Техника живописи различных мастеров
Экзаменационные билеты
и ответы по черчению

Двойной интеграл Вычисление двойного интеграла в декартовых координатах

Вычисление тройного интеграла в декартовых координатах

Криволинейный интеграл II рода (по координатам)

Векторное поле Поток векторного поля через поверхность

Потенциальные и соленоидальные векторные поля Ротор векторного поля

Решение примерного варианта контрольной работы

Задача . Дана функция z = cos2(2x – y). Требуется: 1) найти частные производные  и ; 2) найти полный дифференциал dz;

Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0.

Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1, x + y = 3. 

Поверхность задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i.

Решение примерного варианта контрольной работы №2

Задача . Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области  D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Вычислить работу силы  при перемещении точки приложения силы вдоль заданной кривой L:  от точки B до точки C, если значения параметра t в точках B и C заданы: .

Задача.  Дано векторное поле  и уравнение плоскости d: 3x + y + 2z – 3 = 0. Требуется:

найти поток поля  через плоскость треугольника АВС где А, В, и С – точки пересечения плоскости d с координатными осями, в направлении нормали плоскости, ориентированной «от начала координат»; построить чертеж пирамиды ОАВС, где О – начало координат; используя формулу Остроградского-Гаусса, вычислить поток поля  через полную поверхность пирамиды ОАВС в направлении внешней нормали.

Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

ПРИМЕР Подвести под дифференциал .

РЕШЕНИЕ. Последовательно проведем следующие преобразования: . Воспользуемся формулой  при  и получим окончательно . Но тогда .

Интегрирование тригонометрических функций вида

Интегрирование по частям ПРИМЕР 1. Вычислить . РЕШЕНИЕ. Выберем ,  и проведем вычисления согласно (*) (обращаем внимание на возможный вариант записи этих вычислений).

Иногда формула позволяет искомый интеграл выразить через некоторые функции и этот же интеграл. Полученное равенство является уравнением относительно искомого интеграла. Решив это уравнение, вычислим интеграл. Интегралы такого типа называют возвратными.

Метод замены переменной (интегрирование подстановкой)

Интегрирование дробно-рациональной функций ПРИМЕР . Вычислить . РЕШЕНИЕ. Рационализируем интеграл заменой . Тогда ,  и . Выделим целую часть, правильную дробь разложим на сумму простейших дробей

Диффенцируемость ФНП

Дифференциалы высших пррядков ФНП ПРИМЕР. Для функции . Найти ,  при произвольных  и . Решение. Вычисляем последовательно частные производные  и , а затем , ; . Ниже рассмотрены некоторые часто встречающиеся интегралы и применяемые для их вычисления подстановки Тригонометрические подстановки , ,  применяются в тех случаях, когда подынтегральное
выражение содержит радикалы , ,  или их степени.

Функции нескольких переменных ПРИМЕР . Выразить объем  цилиндра, радиус которого , высота , через эти переменные. Указать область определения функции. Ответ. , область определения – часть плоскости :

Диффенцирование неявно заданной функции

Локальный экстремум ФНП Различают несколько постановок задачи на нахождение экстремума ФНП  в зависимости от вида множества  – множества допустимых аргументов . При этом под символом  можно понимать максимум () или минимум (), но чаще решается задача минимизации ФНП, поскольку .

Интегрирование функций нескольких переменных С размерностью фигуры связано интуитивно понимаемое понятие мера фигуры (сокр. ). Теория меры множества включает понятия: "спрямляемость" дуги", "квадрируемость" области,
"кубируемость" тела, устанавливая, в частности, необходимые и достаточные условия их существования.

Некоторые свойства интеграла ФНП Геометрические свойства интеграла ФНП Некоторые механические примложения интеграла ФН Масса фигуры (отрезка, дуги, плоской фигуры, части криволинейной поверхности, тела)

Вычисление интеграла ФНП. Решение типовых задач

Производная функции в точке

Обратная функция , ее свойства ПРИМЕР. Для функции найти обратную функцию; рассмотреть графики прямой и обратной функций.

ПРИМЕР. Вычислить производную функции  на ОДЗ. РЕШЕНИЕ. Можно дифференцировать последовательно: сначала логарифмированную функцию, затем по формулам производной дроби и произведения. На проще сначала выражение прологарифмировать, а затем уже дифференцировать.

Правило Лопиталя применяется только для раскрытия неопределенностей.

ПРИМЕР.  – здесь нет неопределенности, правило Лопиталя не применимо; в точке  функция непрерывная и предел ее при  равен значению функции в предельной точке.