Нагрузочные диаграммы механизма и двигателя Трехфазная мостовая схема

Курс лекций по электротехнике

Трехфазная мостовая схема (схема Ларионова)

Трехфазная мостовая схема (рис. 1.6, а) обладает наилучшим коэффициентом использования трансформатора по мощности, наименьшим обратным напряжением на диодах и высокой частотой пульсации (шестипульсная) выпрямленного напряжения, что, в некоторых случаях, позволяет использовать эту схему без фильтра. Схема применяется в широком диапазоне выпрямленных напряжений и мощностей.

Схема трехфазного мостового выпрямителя содержит выпрямительный мост из шести вентилей, в котором последовательно соединены две трехфазные группы. В нижней группе вентили соединены катодами (катодная группа), а в верхней – анодами (анодная группа). Нагрузка подключается между точками соединения катодов и анодов вентилей. Схема допускает соединение как первичных, так и вторичных обмоток трансформатора звездой или треугольником.

Диаграммы напряжений и токов, поясняющие работу идеализированного трехфазного мостового выпрямителя на активную нагрузку, представлены на рис. 1.6 (б, в). Лабораторные работы 311 Применение универсального фотометра ФМ-56 для получения спектральных характеристик поглощения твердого прозрачного образца

ris1_6

Рис. 1.6. Трехфазная мостовая схема выпрямления (схема Ларионова) (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б, в).

Каждая из двух групп выпрямителя повторяет работу трехфазного выпрямителя со средней точкой, поэтому при таком же значении напряжения вторичной обмотки трансформатора , как и в трехфазном выпрямителе со средней точкой, среднее выпрямленное напряжение  данного выпрямителя будет в два раза больше или наоборот, при том же значении  величина  будет в два раза меньше [2, 3]:

,

что сокращает число витков вторичных обмоток трансформатора и снижает требования к изоляции.

Максимальное обратное напряжение вентиля данной схемы, как и в трехфазной схеме со средней точкой, равно амплитуде линейного вторичного напряжения. Однако ввиду того, что при том же значении  величина  в данной схеме в два раза меньше, соотношение здесь получается более предпочтительным

В схеме трехфазного выпрямителя со средней точкой ток нагрузки создается под действием фазного напряжения вторичной обмотки трансформатора, а в мостовой схеме – под действием линейного напряжения. Ток нагрузки здесь протекает через два вентиля: один – с наиболее высоким потенциалом анода относительно нулевой точки трансформатора из катодной группы, другой – с наиболее низким потенциалом катода из анодной группы. Иными словами, в проводящем состоянии будут находиться те два накрест лежащих вентиля выпрямительного моста, между которыми действует в проводящем направлении наибольшее линейное напряжение.

За период напряжения питания происходит шесть переключений вентилей и схема работает в шесть тактов, в связи с чем ее часто называют шестипульсной. Таким образом, выпрямленное напряжение имеет шестикратные пульсации, хотя угол проводимости каждого вентиля такой же, как в трехфазной схеме со средней точкой, т.е. 2π/3 (120º). Среднее значение тока вентиля соответственно составляет . При этом интервал совместной работы двух вентилей равен π/3 (60º).

Кривая тока вторичной обмотки трансформатора определяется токами двух вентилей, подключенных к данной фазе. Один из вентилей входит в анодную группу, а другой – в катодную. Вторичный ток является переменным с паузой между импульсами длительностью π/3 (60º), когда оба вентиля данной фазы закрыты. Постоянная составляющая во вторичном токе отсутствует, в связи с чем поток вынужденного подмагничивания магнитопровода трансформатора в мостовой схеме не создается.

На базе этой схемы возможно построение 12-ти и 24-х пульсных схем выпрямления, которые используют последовательное и параллельное соединение схем при различном сочетании соединений ("звезда" или "треугольник") вторичных обмоток трансформатора.

Нагрузочные диаграммы механизма и двигателя.

Исходные данные для выбора двигателя обычно представляются в виде нагрузочных диаграмм механизма, т.е. зависимостей Мс(t) и w(t) и приведенного момента инерции Jм¢ (см. п.2.2). Зависимость w (t) иногда называют  тахограммой. Иногда Мс(t) зависит от пути, в этом случае при известной скорости можно перестроить заданный график Мс(j), получив его в виде Мс(t).

Нагрузочные диаграммы механизма, вообще говоря, могут иметь любой вид, однако всегда можно выделить цикл, т.е. промежуток времени tц, через который диаграмма повторяется. Если характер работы таков, что режимы воспроизводятся плохо (лифт, подъемный кран и т.п.), строят нагрузочные диаграммы для наиболее вероятного или наиболее тяжелого цикла.

Следует особо подчеркнуть, что для обоснованного выбора двигателя требуемая нагрузочная диаграмма механизма должна быть известна. На рис. 7.2 в качестве примера приведены требуемые нагрузочная диаграмма и тахограмма некоторого механизма (верхние для графика).

Рис. 7.2. Нагрузочные диаграммы механизма и двигателя

Коэффициент использования трансформатора для различных схем выпрямления при активной нагрузке Аналогично рассмотренной схеме со средней точкой могут быть определены габаритная мощность и коэффициент использования трансформатора по мощности для любых схем выпрямления при чисто активной нагрузке

Выпрямительные диоды Выпрямительные свойства полупроводниковых диодов характеризуются рядом параметров, определяющих токи и напряжения в прямом и обратном направлениях. Эти параметры определяются вольт-амперной характеристикой (ВАХ) диода

Выбор вентилей выпрямительного устройства

Классификация сглаживающих фильтров

Эквивалентная схема сглаживающего фильтра. Расчет индуктивно-емкостных фильтров.


Двухполупериодная схема со средней точкой (схема Миткевича)