Матанализ
Контрольная
Начертательная
Живопись
Примеры
Математика
Черчение
Сопромат

Физика

Курсовая
КОМПАС-3D
Задачи
Билеты
Проектирование
САПР
Шпоры

Курс лекций по электротехнике

Рассмотрим прежде всего качественные отличия переходных процессов в системе П-Д от изученных ранее случаев, когда еп или f1 изменялись мгновенно, то есть мгновенно устанавливалась соответствующая новая механическая характеристика, а изменение скорости w и момента М в переходном процессе происходило согласно именно этой характеристике. Переходный процесс определялся статической механической характеристикой привода.

В рассматриваемых далее задачах еп или f1 изменяются, как указывалось, не мгновенно, то есть переход привода с одной характеристики на другую происходит постепенно, одновременно с изменением скорости, в результате чего соответствие между скоростью w и моментом М в каждый момент времени определяется не статической механической характеристикой, а другой, отличной от нее характеристикой, которую мы далее будем называть динамической механической характеристикой или просто динамической характеристикой.

В качестве примера на рис. 5.13 показана статическая характеристика асинхронного двигателя при номинальной частоте 1, по которой будет происходить пуск при мгновенном приложении к двигателю напряжения такой частоты, и динамическая характеристика 2, соответствующая пуску двигателя путем плавного изменения частоты от нуля до номинальной по некоторому закону.

Рис. 5.13. Статическая 1 и динамическая 2 механические характеристики

Динамические характеристики определяются темпом изменения фактора, вызывающего переходный процесс, и параметрами привода, могут очень сильно отличаться от статических характеристик и даже иметь совсем другую форму.

Легко обнаружить связь зависимостей w(t) и М(t) с динамической характеристикой привода: исключив время t из уравнений w(t) и М(t), мы получим динамическую характеристику.

а) Уравнения, описывающие переходные процессы.

Из уравнения механической характеристики (5.4) получим:

 М = ½b½w0 - ½b½w. (5.5,а)

Подставив (5.5,а) в уравнение движения (5.1), после элементарных преобразований будем иметь:

  (5.13)

Коэффициент при производной  как и раньше, - электромеханическая постоянная времени Тм. Правая часть уравнения представляет собою скорость wс, соответствующую моменту сопротивления Мс, однако, в рассматриваемом случае w0 , а значит и wс не постоянные величины, а известные функции времени w0(t) и wc(t). Таким образом, уравнение (5.13) имеет вид:

 . (5.14)

Решение этого дифференциального уравнения определит искомую зависимость w(t).

Для получения зависимости М(t) удобно воспользоваться непосредственно уравнением движения (5.1), подставив в него производную найденной функции w(t):

  (5.15)

Правая часть уравнения (5.14), вообще говоря, может иметь любой вид. Закон w0(t) в случае безынерционного преобразователя формируется на его входе; при инерционном преобразователе закон w0(t) связан со свойствами преобразователя. В ряде случаев закон w0(t) формируется таким образом, чтобы получить требуемый закон w(t).

б) Уравнение переходных процессов при линейном законе wс(t)

Получим решение уравнения (5.14) для одного важного вида функции wс(t) - для линейного изменения wс во времени:

 wс(t) = а + kt. (5.16)

Такой закон может быть сформирован при безынерционном преобразователе с помощью задатчика интенсивности.

Мы используем здесь общее уравнение прямой, не накладывая пока никаких ограничений на величины а и k с тем, чтобы, рассматривая частные случаи, можно было пользоваться полученным общим результатом.

Уравнение (5.14) с учетом (5.16) имеем вид:

  (5.17)

Решение будем искать, как и прежде, в виде суммы свободной wсв и принужденной wпр составляющих:

 w = wсв + wпр . (*)

Свободная составляющая, то есть решение однородного уравнения, полученного из (5.17) имеет вид:

 

Принужденную составляющую будем искать, учитывая (5.16), в виде:

 wпр = В + kt,

так как в установившемся режиме скорость будет линейно изменяться во времени. Подставив wпр в (5.17) получим:

 В + kt + kTм = a + kt

или

 B = a - kT м.

Подставим теперь wсв иwпр в (*):

 

Постоянную А найдем, используя начальные условия: при t = 0 w  = wнач:

 wнач = А + а - kTм,

откуда

 А = wнач - а + kTм

Окончательно будем иметь:

 . (5.18)

Перейдем теперь к рассмотрению некоторых конкретных переходных процессов в системе П-Д.

в) Пуск вхолостую.

Будем полагать, что закон изменения во времени фактора, вызывающего переходный процесс, еп или f1 или в общем случае w0 имеет вид, представленный на рис. 5.14 справа вверху. Так как Мс = 0 (пуск вхолостую), то wс = (t) будет совпадать с w0(t) - см. уравнение (5.13), т.е. а = 0 и

 

где e - ускорение, характеризующее темп изменения w0;

 при 0 < t < t1 wс(t) = et;

 при t > t1 wс(t) =w01 = сonst.

Излом функции wс(t) при t = t1 свидетельствует о том что переходный процесс состоит из двух этапов, и его необходимо рассчитать отдельно для каждого участка.

I этап (0 < t < t1).

Приняв, что при t = 0 wнач = 0 и подставив в (5.18) а = 0, k = e, получим

  (5.19)

Рис. 5.14. Механические характеристики и графики переходного процесса при пуске вхолостую с w0(t) = et

Воспользовавшись уравнением (5.15), найдем закон изменения момента во времени:

  (5.20)

Проанализируем полученные уравнения.

Ускорение привода определится как

 

и при t = 0  Этот результат очевиден: при t = 0 wс = w0 = 0 т.е. еп = 0 или f1 = 0, привод не развивает момента и в соответствии с уравнением движения (5.1)  и .

При t > 3Тм , т.е. скорость изменяется в том же темпе, что и фактор, вызывающий переходный процесс. Из уравнения (5.19) следует, что при t > 3Тм

 w = e(t - Тм) = wс(t) - eТм . (5.19,а)

Графики wс(t) и w(t) представлены на рис. 5.14. Кривая w(t) сдвинута вправо относительно кривой wс(t) на величину Тм; в каждый момент времени при t > 3Тм разница между wс и w составляет eТм.

Момент в соответствии с (5.20) возрастает по экспоненциальному закону (см. рис. 5.14) и при t > 3Тм достигает величины

 Mмакс = Je. (5.20,а)

Это соотношение позволяет оценить допустимую величину e. Действительно, если считать, что в переходном процессе Ммакс = Мдоп, то

 

В частности, можно найти минимальное время пуска привода при котором момент не превысит допустимого значения:

 

Если положить, что Мдоп = 2 Мн, а  , что справедливо для нормальной электрической машины средней мощности, то получим

 

II этап (t > t1).

На II этапе wс =w01 , а значит, и еп или f1 имеют постоянную величину. Переходный процесс в этом случае ничем не отличается от рассмотренных ранее переходных процессов, отнесенных к первой группе задач. Если отсчитывать время от t1, (точка 0’), то скорость w и момент М будут изменяться в соответствии с уравнением (5.10); в качестве хнач следует принять значения w и М в момент времени t1. Если t1< 3Тм, начальные значения должны быть лпределены по (5.19) и (5.20) при подстановке в эти уравнения t = t1.

В качестве хкон, очевидно, следует взять w01 и 0.

Графики w(t) и M(t) на II этапе показаны на рис. 5.14. Там же слева приведена динамическая механическая характеристка для случая пуска вхолостую.

Все рассмотренные выше величины и зависимости имеют очевидный физический смысл для системы П-Д с двигателем постоянного тока. Действительно,

  

т.е. кривая w0(t) представляет собою в некотором масштабе закон изменения во времени еп, а кривая w(t) - закон изменения е в том же масштабе. Разность этих величин в соответствии с вторым законом Кирхгофа определит ток, протекающий в якорной цепи:

 

а значит, и момент, развиваемый двигателем

 M(t) = ci(t).


Компьютерные сети