Примеры решения задач Машиностроительное черчение

Контрольная по начертательной геометрии
  • Практическая часть курса начертательной геометрии
  • Постpоить проекции пирамиды с основанием АВС,
  • Построить развepтки поверхностей прямой
    призмы и пирамиды
  • Построить в плоскости общего положения АВС
  • Построить фиrypу сечения прямого кpyгового конуса
  • Построить развертки поверхностей конуса и цилиндра
  • Построить линию пересечения цилиндра вращения
  • КОМПЛЕКСНЫЙ ЧЕРТЕЖ
  • Комплексный чертеж точки
  • Конкурирующие точки
  • ОСНОВНЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ
  • Кривая линия общего вида
  • ВЗАИМОПРИНАДЛЕЖНОСЬ ГЕОМЕТРИЧЕСКИХ
    ФИГУР
  • Точка и линия на поверхности.
  •  Пересечь геометрические фигуры
  • Конические сечения
  • Метод проецирующих секущих плоскостей
  • Метод концентрических сфер
  • Способ вращения вокруг проецирующей прямой
  • ПАРАЛЛЕЛЬНОСТЬ И ПЕРПЕНДИКУЛЯРНОСТЬ
    ГЕОМЕТРИЧЕСКИХ ФИГУР
  • Перпендикулярность прямых и плоскостей
  • Классификация метрических задач
    (определение углов и расстояний)
  • СТАНДАРТНАЯ ОРТОГОНАЛЬНАЯ АКСОНОМЕТРИЯ
  • Способы преобразования комплексного чертежа
  • ПЕРЕСЕЧЕНИЕ ПЛОСКОСТЕЙ
  • Зададим систему аксонометрических осей
  • Построить линию пересечения прямого
    кругового конуса и сферы
  • Построить линию пересечения прямого
    кругового конуса и цилиндра
  • По заданным точкам строим
    трёхкартинный чертёж тетраэдра
  • Контрольная работа
    МАШИНОСТРОИТЕЛЬНОЕ ЧЕРЧЕНИЕ
  • Построение трех изображений
    и аксонометрической пpoeкции
  • Построение третьего изображения 
    по двум данным
  • Изображение резьб и резьбовых соединении
  • Составление эскизов деталей машин
  • Выполнение чертежа общего вида
    машиностроuтельного изделия
  • Курсовая работа
  • ПОСТРОЕНИЕ РАЗВЕРТКИ ПОВЕРХНОСТИ
    ПИРАМИДЫ
  • ОСНОВНЫЕ СВЕДЕНИЯ О ЗУБЧАТЫХ КОЛЕСАХ
  • ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ ЗАДАНИЯ
  • ТРУБНАЯ ЦИЛИНДРИЧЕСКАЯ РЕЗЬБА
  • КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ
    СОЕДИНИТЕЛЬНЫХ ЧАСТЕЙ
  • Соединение труб муфтами
  • Соединение труб переходной муфтой
  • Соединения труб угольниками,
    прямыми тройниками и прямыми крестами
  • Перекрытие трубы колпаком
  • Резьбовые соединения
  • Метрическая резьба
  • Трапецеидальная резьба
  • Прямоугольная и квадратная резьбы
  • Изображение внутренней резьбы
  • ОБОЗНАЧЕНИЕ РЕЗЬБЫ НА ЧЕРТЕЖАХ
  • ЗАДАНИЕ ПО ТЕМЕ «РЕЗЬБЫ»
  • Конец вала с трапецеидальной резьбой в отверстии
  • Виды, разрезы, сечения, выносные элементы
  • Механические краны (вентили)
  • Маховики механических кранов
  • Форма и порядок заполнения спецификации
    к сборочным чертежам
  • Обозначение крепёжных и других стандартных изделий.
  • Обозначение материалов
  •  

    Методические указания и примеры решения

    З а д а ч а I

    Напомним в общих чертах решение задачи на построение линии пересечения двух плоскостей. Искомая прямая строится по двум точкам. Эти точки определяются с помощью двух плоскостей-посредников. Каждый посредник пересекает заданные плоскости по двум прямым. Точка пересечения этих прямых принадлежит искомой линии. В общем случае для решения задачи требуется построить 8 вспомогательных точек и по ним провести 4 вспомогательные пря­мые. Однако в каждом конкретном случае следует искать возможность сократить число таких точек и линий за счет использова­ния точек и линий, которые заданы по условию задачи. Точность построения прямых тем выше, чем больше расстояние между точка­ми, задающими эти прямые.

    Трудоёмкость и точность графических построений во многом определяется выбором посредников. Это исследовательская часть работы. Основные направления учебно-исследовательской работы (УИРС) в данной задаче:

    1. Если посредники параллельны?

    2. Если посредники проходят через прямые, которые задают плоскости?

    3. Расстояние между проекциями точек, задающих вспомога­тельные прямые, должно быть не менее 20 мм (условное число).

    Пункт I ведёт к сокращению вспомогательных точек с 8 до 6. Пункт 2 ведет к сокращению числа вспомогательных точек и ли­ний в два раза. Пункт 3 обеспечивает достаточную точность гра­фических построений. По какому пути пойти? По первому? По второму? Использовать то и другое? А требования пункта 3? Всё зависит от конкретных условий задачи. Думайте и решайте!

    Пример решения (рис.11):

    1. По заданным точкам строим треугольник и параллелограмм. Для построения вершины G используем свойство параллелограмма.

    2. Через стороны параллелограмма DE и FG проводим парал­лельные посредники:

    Σ (Σ2) и Σ/( Σ/2 ). (Таким образом, мы выбрали сразу два направления УИРС: первое и второе).

    3. Пресекаем посредник Σ с плоскостью ABC по прямой m. Прямая m строится по точкам I и 2, которые получаются путём пе­ресечения посредника со сторонами треугольника АС и АВ. (Расстояние между проекциями точек соответствует требованию пункта 3). Прямые DE и m принадлежат посреднику и пересекаются в точке K искомой линии.

    4. Пересекаем посредник Σ/ с плоскостью ABC по прямой m/. Прямая m/ проводится через точку 3 параллельно прямой m. Точка 3 определяется пересечением прямой GF с посредником. Прямые GF и m/ пересекаются в точке L. Это вторая точка искомой линии.

    5. Cтроим искомую прямую ℓ(K,L) и ограничиваем её отрезком [КМ], по которому пересекаются треугольник и параллелограмм.

    6. Определяем видимость с помощью конкурирующих точек. На фронтальной проекции используем точки I и 4, у которых 12=24. Точка I принадлежат треугольнику, точка 4 - параллелограмму. Фронтальная проекция точки 4 видима, значит видима в этом мес­те и часть параллелограмма. Аналогично с помощью точек 5 и 6 определяется видимость на горизонтальной проекции.

    7. Запишем алгоритм решения (рис.11).

    Что дал нам выбор посредников?

    1. Задача решена при помощи 2-х вспомогательных прямых и 3-х вспомогательных точек вместо 4-х прямых и 8-ми точек в общем случае. Это сокращение трудоёмкости.

    2. Выдержаны требования пункта 3 УИРС. Этим обеспечена до­статочная точность построения вспомогательных прямых.

     

     

    Примеры решения задач по начертательной геометрии