Примеры решения задач начертательная геометрия

Контрольная по начертательной геометрии
  • Практическая часть курса начертательной геометрии
  • Постpоить проекции пирамиды с основанием АВС,
  • Построить развepтки поверхностей прямой
    призмы и пирамиды
  • Построить в плоскости общего положения АВС
  • Построить фиrypу сечения прямого кpyгового конуса
  • Построить развертки поверхностей конуса и цилиндра
  • Построить линию пересечения цилиндра вращения
  • КОМПЛЕКСНЫЙ ЧЕРТЕЖ
  • Комплексный чертеж точки
  • Конкурирующие точки
  • ОСНОВНЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ
  • Кривая линия общего вида
  • ВЗАИМОПРИНАДЛЕЖНОСЬ ГЕОМЕТРИЧЕСКИХ
    ФИГУР
  • Точка и линия на поверхности.
  •  Пересечь геометрические фигуры
  • Конические сечения
  • Метод проецирующих секущих плоскостей
  • Метод концентрических сфер
  • Способ вращения вокруг проецирующей прямой
  • ПАРАЛЛЕЛЬНОСТЬ И ПЕРПЕНДИКУЛЯРНОСТЬ
    ГЕОМЕТРИЧЕСКИХ ФИГУР
  • Перпендикулярность прямых и плоскостей
  • Классификация метрических задач
    (определение углов и расстояний)
  • СТАНДАРТНАЯ ОРТОГОНАЛЬНАЯ АКСОНОМЕТРИЯ
  • Способы преобразования комплексного чертежа
  • ПЕРЕСЕЧЕНИЕ ПЛОСКОСТЕЙ
  • Зададим систему аксонометрических осей
  • Построить линию пересечения прямого
    кругового конуса и сферы
  • Построить линию пересечения прямого
    кругового конуса и цилиндра
  • По заданным точкам строим
    трёхкартинный чертёж тетраэдра
  • Контрольная работа
    МАШИНОСТРОИТЕЛЬНОЕ ЧЕРЧЕНИЕ
  • Построение трех изображений
    и аксонометрической пpoeкции
  • Построение третьего изображения 
    по двум данным
  • Изображение резьб и резьбовых соединении
  • Составление эскизов деталей машин
  • Выполнение чертежа общего вида
    машиностроuтельного изделия
  • Курсовая работа
  • ПОСТРОЕНИЕ РАЗВЕРТКИ ПОВЕРХНОСТИ
    ПИРАМИДЫ
  • ОСНОВНЫЕ СВЕДЕНИЯ О ЗУБЧАТЫХ КОЛЕСАХ
  • ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ ЗАДАНИЯ
  • ТРУБНАЯ ЦИЛИНДРИЧЕСКАЯ РЕЗЬБА
  • КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ
    СОЕДИНИТЕЛЬНЫХ ЧАСТЕЙ
  • Соединение труб муфтами
  • Соединение труб переходной муфтой
  • Соединения труб угольниками,
    прямыми тройниками и прямыми крестами
  • Перекрытие трубы колпаком
  • Резьбовые соединения
  • Метрическая резьба
  • Трапецеидальная резьба
  • Прямоугольная и квадратная резьбы
  • Изображение внутренней резьбы
  • ОБОЗНАЧЕНИЕ РЕЗЬБЫ НА ЧЕРТЕЖАХ
  • ЗАДАНИЕ ПО ТЕМЕ «РЕЗЬБЫ»
  • Конец вала с трапецеидальной резьбой в отверстии
  • Виды, разрезы, сечения, выносные элементы
  • Механические краны (вентили)
  • Маховики механических кранов
  • Форма и порядок заполнения спецификации
    к сборочным чертежам
  • Обозначение крепёжных и других стандартных изделий.
  • Обозначение материалов
  •  

    Перпендикулярность прямых и плоскостей.

    Пример 1 (Рис.64). Через точки  и . И провести перпендикуляры к линии .

    Через любую точку в пространстве можно провести бесконечное число прямых, пересекающих линию  или скрещивающихся с ней под прямым углом. Но не все прямые, углы проецируются без искажения. Поэтому для проведения перпендикуляров предпочтительно задавать линии уровня.

    Решение:

    1). ,

    2). (fB)lf2l2

    Для прямой, перпендикулярной к плоскости, дадим поэтапно три определения: общее для пространства, в принципе применимое для комплексного чертежа и практически применимое для выполнения графических построений:

    1) Прямая перпендикулярна к плоскости, если она перпендикулярна к двум не параллельным прямым этой плоскости.

    2) Прямая перпендикулярна к плоскости, если она перпендикулярна (в частности) к двум линиям уровня на этой плоскости.

    3) Прямая перпендикулярна к плоскости, если горизонтальная проекция прямой перпендикулярна к горизонтальной проекции горизонтали этой плоскости, а фронтальная проекция прямой- перпендикулярна к фронтальной проекцией фронтали. (Используются любые пары изображения перпендикуляра и с профильной проекцией. Тогда профильная проекция прямой перпендикулярна к профильной прямой плоскости).

    Пример 2 (Рис.65). Через точку  провести перпендикулярную к плоскости .

    Дано:

    .

    Решение:

    1). ,

    2). ,

    3).

    ?: (n A) ∆.

    Пример 3 (Рис.66). Через точку провести плоскость, перпендикулярную к плоскости .

    Зададим искомую плоскость двумя пересекающимися прямыми. Одна из них может быть произвольная, вторая – обязательно перпендикулярной к заданной плоскости.

    Дано:

    Решение:

    1).  – произвольная прямая,

    2). ,

    3). .

    ?: .

    Линия наибольшего наклона на плоскости

    Для начала представим себе материальную точку  на наклонной плоскости , которая по кратчайшему пути  скатывается на горизонтальную плоскость проекций  (рис.67). Понятно, что линия ската   перпендикулярна линии , по которой пересекаются обе плоскости   и .

    Свойства линии ската:

    1) Линия ската на наклонной плоскости есть линия, наибольшего наклона по отношению к горизонтальной плоскости проекций. (Из неравенства: ).

    2) Линия ската (линия наибольшего наклона) определяет угол наклона плоскости к горизонтальной плоскости проекций. (Из определения двугранного угла с учетом теоремы о проецировании прямого угла).

    3) Линия ската перпендикулярна к горизонталям  на наклонной плоскости по отношению к плоскости проекций. (Из условия параллельности любой горизонтали по отношению к линии пересечения наклонной плоскости с плоскости горизонтальной проекций:  ).

    По аналогии можно говорить о линиях наибольшего наклона относительно и других плоскостей проекций.

    Пример (Рис.68). Через точку  на плоскости провести линию наибольшего наклона по отношению к фронтальной плоскости проекций .

    Понятно, что линия наибольшего наклона к фронтальной плоскости проекций перпендикулярна к фронталям заданной плоскости.

    Дано:

    ,

    .

    Решение:

    1).

    2).  

    ?:  .

     

     

    Примеры решения задач по начертательной геометрии