Примеры решения задач начертательная геометрия

Контрольная по начертательной геометрии
  • Практическая часть курса начертательной геометрии
  • Постpоить проекции пирамиды с основанием АВС,
  • Построить развepтки поверхностей прямой
    призмы и пирамиды
  • Построить в плоскости общего положения АВС
  • Построить фиrypу сечения прямого кpyгового конуса
  • Построить развертки поверхностей конуса и цилиндра
  • Построить линию пересечения цилиндра вращения
  • КОМПЛЕКСНЫЙ ЧЕРТЕЖ
  • Комплексный чертеж точки
  • Конкурирующие точки
  • ОСНОВНЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ
  • Кривая линия общего вида
  • ВЗАИМОПРИНАДЛЕЖНОСЬ ГЕОМЕТРИЧЕСКИХ
    ФИГУР
  • Точка и линия на поверхности.
  •  Пересечь геометрические фигуры
  • Конические сечения
  • Метод проецирующих секущих плоскостей
  • Метод концентрических сфер
  • Способ вращения вокруг проецирующей прямой
  • ПАРАЛЛЕЛЬНОСТЬ И ПЕРПЕНДИКУЛЯРНОСТЬ
    ГЕОМЕТРИЧЕСКИХ ФИГУР
  • Перпендикулярность прямых и плоскостей
  • Классификация метрических задач
    (определение углов и расстояний)
  • СТАНДАРТНАЯ ОРТОГОНАЛЬНАЯ АКСОНОМЕТРИЯ
  • Способы преобразования комплексного чертежа
  • ПЕРЕСЕЧЕНИЕ ПЛОСКОСТЕЙ
  • Зададим систему аксонометрических осей
  • Построить линию пересечения прямого
    кругового конуса и сферы
  • Построить линию пересечения прямого
    кругового конуса и цилиндра
  • По заданным точкам строим
    трёхкартинный чертёж тетраэдра
  • Контрольная работа
    МАШИНОСТРОИТЕЛЬНОЕ ЧЕРЧЕНИЕ
  • Построение трех изображений
    и аксонометрической пpoeкции
  • Построение третьего изображения 
    по двум данным
  • Изображение резьб и резьбовых соединении
  • Составление эскизов деталей машин
  • Выполнение чертежа общего вида
    машиностроuтельного изделия
  • Курсовая работа
  • ПОСТРОЕНИЕ РАЗВЕРТКИ ПОВЕРХНОСТИ
    ПИРАМИДЫ
  • ОСНОВНЫЕ СВЕДЕНИЯ О ЗУБЧАТЫХ КОЛЕСАХ
  • ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ ЗАДАНИЯ
  • ТРУБНАЯ ЦИЛИНДРИЧЕСКАЯ РЕЗЬБА
  • КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ
    СОЕДИНИТЕЛЬНЫХ ЧАСТЕЙ
  • Соединение труб муфтами
  • Соединение труб переходной муфтой
  • Соединения труб угольниками,
    прямыми тройниками и прямыми крестами
  • Перекрытие трубы колпаком
  • Резьбовые соединения
  • Метрическая резьба
  • Трапецеидальная резьба
  • Прямоугольная и квадратная резьбы
  • Изображение внутренней резьбы
  • ОБОЗНАЧЕНИЕ РЕЗЬБЫ НА ЧЕРТЕЖАХ
  • ЗАДАНИЕ ПО ТЕМЕ «РЕЗЬБЫ»
  • Конец вала с трапецеидальной резьбой в отверстии
  • Виды, разрезы, сечения, выносные элементы
  • Механические краны (вентили)
  • Маховики механических кранов
  • Форма и порядок заполнения спецификации
    к сборочным чертежам
  • Обозначение крепёжных и других стандартных изделий.
  • Обозначение материалов
  •  

    Метод концентрических сфер

    Метод концентрических сфер применяется для пересечения поверхностей вращения, у которых общая плоскость симметрии параллельна плоскости проекций. В этом случае сфера с центром в точке пересечения осей вращения соосна с поверхностями и пересекает их по окружностям. Которые, в свою очередь, пересекаются в двух точках, принадлежащих искомой линии пересечения. На чертеже – это совпадающие между собой проекции двух конкурирующих точек в месте пересечения вырожденных проекций вспомогательных окружностей. В таких случаях пояснения и обозначения на чертеже ведутся, как правило, только для видимых проекций конкурирующих точек и, соответственно, для видимых проекций конкурирующих частей линии.

    В целом решение задач методом концентрических сфер ведется в обычной, принятой ранее последовательности. За исключением того, что после выбора метода необходимо ограничить область применения посредников минимальной и максимальной сферами.

    Пример (Рис.49). Построить линию пересечения поверхностей вращения цилиндра и конуса с общей фронтальной плоскостью симметрии.

    Решение:

    1) Условия задачи позволяют использовать способ концентрических сфер.

    2) Определяем область применения посредников.

    Радиус минимальной сферы () определяем сравнением сфер, вписанных в заданные поверхности (и ). Выбор падает на больший радиус, радиус сферы, вписанной в цилиндр (). Воспользуемся тем, что минимальная сфера дает возможность построить одну из опорных точек  как место пересечения проекций линий касания сферы с цилиндром и линии пересечения её с конусом.

    Максимальная сфера должна пройти через самую удаленную от центра точку, принадлежащую искомой линии. В данном случае это сфера, которая проходит через основание конуса и пересекает цилиндр (). И вот – проекция еще одной опорной точки: .

    3) На этом этапе определяют опорные точки. В нашем случае осталось не строить, а просто обозначить очерковую проекцию точки  пересекающей главные меридианы поверхностей. В итоге имеем три опорные точки проекции начала и конца линии и степени ее перегиба.

    4) При помощи промежуточных сфер определяем проекции необходимого числа текущих точек.

    5) Строим изображение искомой линии пересечения.

    6) Обводим чертеж с учетом видимости.

    Особый интерес вызывает частный случай метода концентрических сфер, когда поверхности вращения описаны вокруг одной и той же сферы. Это приводит к резкому сокращению трудоемкости построений благодаря теореме Г. Монжа.

    Частный случай теоремы Г.Монжа

    (без доказательства)

    Если две поверхности вращения 2-го порядка(конусы и цилиндры)описаны вокруг общей сферы, то они пересекаются по двум линиям того же порядка. Это могут быть эллипсы или параболы. Плоскости которые пересекаются по прямой, проходящей через точки пересечения линий касания сферы с заданными поверхностями.

    В этом случае вырожденные прямолинейная проекция каждой из линий пересечения строится по двум из трёх возможных точкам. Это проекция двух точек пересечения очерковых образующих и совмещенная проекция конкурирующих точек пересечения искомых линий пересечения.

    Пример (Рис.50). Построить результат пересечения цилиндра и конуса вращения, если они описаны вокруг одной и той же сферы.

    Решение:

    1). Обозначим проекции всех очерковых точек: ,  и .

    2). Строим проекцию одного из эллипсов: .

    3). Строим проекцию 2-ого эллипса: , , где  – результат пересечения проекций линий по которым сфера касается с заданными поверхностями.

     

     

     

    Примеры решения задач по начертательной геометрии