Примеры решения задач начертательная геометрия

Контрольная по начертательной геометрии
  • Практическая часть курса начертательной геометрии
  • Постpоить проекции пирамиды с основанием АВС,
  • Построить развepтки поверхностей прямой
    призмы и пирамиды
  • Построить в плоскости общего положения АВС
  • Построить фиrypу сечения прямого кpyгового конуса
  • Построить развертки поверхностей конуса и цилиндра
  • Построить линию пересечения цилиндра вращения
  • КОМПЛЕКСНЫЙ ЧЕРТЕЖ
  • Комплексный чертеж точки
  • Конкурирующие точки
  • ОСНОВНЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ
  • Кривая линия общего вида
  • ВЗАИМОПРИНАДЛЕЖНОСЬ ГЕОМЕТРИЧЕСКИХ
    ФИГУР
  • Точка и линия на поверхности.
  •  Пересечь геометрические фигуры
  • Конические сечения
  • Метод проецирующих секущих плоскостей
  • Метод концентрических сфер
  • Способ вращения вокруг проецирующей прямой
  • ПАРАЛЛЕЛЬНОСТЬ И ПЕРПЕНДИКУЛЯРНОСТЬ
    ГЕОМЕТРИЧЕСКИХ ФИГУР
  • Перпендикулярность прямых и плоскостей
  • Классификация метрических задач
    (определение углов и расстояний)
  • СТАНДАРТНАЯ ОРТОГОНАЛЬНАЯ АКСОНОМЕТРИЯ
  • Способы преобразования комплексного чертежа
  • ПЕРЕСЕЧЕНИЕ ПЛОСКОСТЕЙ
  • Зададим систему аксонометрических осей
  • Построить линию пересечения прямого
    кругового конуса и сферы
  • Построить линию пересечения прямого
    кругового конуса и цилиндра
  • По заданным точкам строим
    трёхкартинный чертёж тетраэдра
  • Контрольная работа
    МАШИНОСТРОИТЕЛЬНОЕ ЧЕРЧЕНИЕ
  • Построение трех изображений
    и аксонометрической пpoeкции
  • Построение третьего изображения 
    по двум данным
  • Изображение резьб и резьбовых соединении
  • Составление эскизов деталей машин
  • Выполнение чертежа общего вида
    машиностроuтельного изделия
  • Курсовая работа
  • ПОСТРОЕНИЕ РАЗВЕРТКИ ПОВЕРХНОСТИ
    ПИРАМИДЫ
  • ОСНОВНЫЕ СВЕДЕНИЯ О ЗУБЧАТЫХ КОЛЕСАХ
  • ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ ЗАДАНИЯ
  • ТРУБНАЯ ЦИЛИНДРИЧЕСКАЯ РЕЗЬБА
  • КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ
    СОЕДИНИТЕЛЬНЫХ ЧАСТЕЙ
  • Соединение труб муфтами
  • Соединение труб переходной муфтой
  • Соединения труб угольниками,
    прямыми тройниками и прямыми крестами
  • Перекрытие трубы колпаком
  • Резьбовые соединения
  • Метрическая резьба
  • Трапецеидальная резьба
  • Прямоугольная и квадратная резьбы
  • Изображение внутренней резьбы
  • ОБОЗНАЧЕНИЕ РЕЗЬБЫ НА ЧЕРТЕЖАХ
  • ЗАДАНИЕ ПО ТЕМЕ «РЕЗЬБЫ»
  • Конец вала с трапецеидальной резьбой в отверстии
  • Виды, разрезы, сечения, выносные элементы
  • Механические краны (вентили)
  • Маховики механических кранов
  • Форма и порядок заполнения спецификации
    к сборочным чертежам
  • Обозначение крепёжных и других стандартных изделий.
  • Обозначение материалов
  •  

    Точка и линия на поверхности.

     Напомним уже известное, что точка принадлежит поверхности, если она на линии, принадлежащей поверхности. Хорошо, если эта линия имеет простые проекции. В противном случае приходится прибегать к способу случайной кривой на каркасе поверхности.

     Дано:

    Тор  

    _____________________

    ?: .

     Решение:

    1). , , .

    2). .

     Пример 1 (Рис.33). Построить фронтальную проекцию точки , принадлежащей открытому тору .

     Для решения задачи можно использовать способ образующей с простыми проекциями. Поскольку через точку  на торе можно провести окружность с проекциями в виде прямой и окружности для задания окружности используем горизонтальную проекцию точки  и точку 1 на меридиане .

     Пример 2 (Рис.34). Построить горизонтальную проекцию точки , принадлежащей коноиду .

     Поскольку плоскость параллелизма заданного коноида - , то через любую точку на его поверхности из простых линий можно проводить только фронтали. Любую фронталь начинают строить с её горизонтальной проекции. Потому, что эта проекция всегда параллельна оси . Но точка  на поверхности коноида задана не горизонтальной проекцией, то остается решать задачу способом случайной кривой на каркасе поверхности.

    Решение:

     1). Задать каркас поверхности семейством фронталей.

     2). Через точку  провести фронтальную проекцию

    произвольной линии .

     3). Построить точки пересечения линии  с элементами каркаса.

     4). Используя горизонтальные проекции полученных точек, построить горизонтальную проекцию линии .

     5). Построить искомую проекцию точки .

     На примере данной задачи показан и способ задания линии на каркасе поверхности.

     При построении линии на поверхности следует учитывать, что полностью или частично она может быть невидимой. Для наглядности и для удобства обводки чертежа невидимые проекции рекомендуется изображать в виде крестика. Должна соблюдаться и последовательность решения задачи:

     1. Определить или построить опорные точки линии. Это начало и конец линии, очерковые точки (границы видимости ), экстремальные и другие чем-то особенные точки. Опорные точки следует обозначать прописными буквами, а промежуточные точки лучше обозначать цифрами

     2. Построить необходимое число промежуточных точек.

     3. Построить недостающую проекцию линии.

     4. Окончательно обвести чертеж с учетом видимости, используя для этого стандартные типы линий.

     Пример 3 (Рис.35). Построить фронтальную проекцию линию , инадлежащей закрытому тору. Для решения задачи есть возможность использовать способ образующих с простыми проекциями.

    Решение:

     1). Построить опорные точки. Точки и  – на основании тора. Точка – на главном меридиане . Фронтальная ее проекция – очерковая. Точка – самая высокая. Для ее построения использована окружность минимального радиуса.

     2). Построить несколько промежуточных точек, многократно решая задачу на принадлежность точки к поверхности.

     3). По фронтальным проекциям опорных и промежуточных точек построить искомую проекцию линии .

     4). Обвести чертеж с учетом видимости.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    Примеры решения задач по начертательной геометрии