Примеры решения задач начертательная геометрия

Контрольная по начертательной геометрии
  • Практическая часть курса начертательной геометрии
  • Постpоить проекции пирамиды с основанием АВС,
  • Построить развepтки поверхностей прямой
    призмы и пирамиды
  • Построить в плоскости общего положения АВС
  • Построить фиrypу сечения прямого кpyгового конуса
  • Построить развертки поверхностей конуса и цилиндра
  • Построить линию пересечения цилиндра вращения
  • КОМПЛЕКСНЫЙ ЧЕРТЕЖ
  • Комплексный чертеж точки
  • Конкурирующие точки
  • ОСНОВНЫЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ
  • Кривая линия общего вида
  • ВЗАИМОПРИНАДЛЕЖНОСЬ ГЕОМЕТРИЧЕСКИХ
    ФИГУР
  • Точка и линия на поверхности.
  •  Пересечь геометрические фигуры
  • Конические сечения
  • Метод проецирующих секущих плоскостей
  • Метод концентрических сфер
  • Способ вращения вокруг проецирующей прямой
  • ПАРАЛЛЕЛЬНОСТЬ И ПЕРПЕНДИКУЛЯРНОСТЬ
    ГЕОМЕТРИЧЕСКИХ ФИГУР
  • Перпендикулярность прямых и плоскостей
  • Классификация метрических задач
    (определение углов и расстояний)
  • СТАНДАРТНАЯ ОРТОГОНАЛЬНАЯ АКСОНОМЕТРИЯ
  • Способы преобразования комплексного чертежа
  • ПЕРЕСЕЧЕНИЕ ПЛОСКОСТЕЙ
  • Зададим систему аксонометрических осей
  • Построить линию пересечения прямого
    кругового конуса и сферы
  • Построить линию пересечения прямого
    кругового конуса и цилиндра
  • По заданным точкам строим
    трёхкартинный чертёж тетраэдра
  • Контрольная работа
    МАШИНОСТРОИТЕЛЬНОЕ ЧЕРЧЕНИЕ
  • Построение трех изображений
    и аксонометрической пpoeкции
  • Построение третьего изображения 
    по двум данным
  • Изображение резьб и резьбовых соединении
  • Составление эскизов деталей машин
  • Выполнение чертежа общего вида
    машиностроuтельного изделия
  • Курсовая работа
  • ПОСТРОЕНИЕ РАЗВЕРТКИ ПОВЕРХНОСТИ
    ПИРАМИДЫ
  • ОСНОВНЫЕ СВЕДЕНИЯ О ЗУБЧАТЫХ КОЛЕСАХ
  • ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ ЗАДАНИЯ
  • ТРУБНАЯ ЦИЛИНДРИЧЕСКАЯ РЕЗЬБА
  • КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ
    СОЕДИНИТЕЛЬНЫХ ЧАСТЕЙ
  • Соединение труб муфтами
  • Соединение труб переходной муфтой
  • Соединения труб угольниками,
    прямыми тройниками и прямыми крестами
  • Перекрытие трубы колпаком
  • Резьбовые соединения
  • Метрическая резьба
  • Трапецеидальная резьба
  • Прямоугольная и квадратная резьбы
  • Изображение внутренней резьбы
  • ОБОЗНАЧЕНИЕ РЕЗЬБЫ НА ЧЕРТЕЖАХ
  • ЗАДАНИЕ ПО ТЕМЕ «РЕЗЬБЫ»
  • Конец вала с трапецеидальной резьбой в отверстии
  • Виды, разрезы, сечения, выносные элементы
  • Механические краны (вентили)
  • Маховики механических кранов
  • Форма и порядок заполнения спецификации
    к сборочным чертежам
  • Обозначение крепёжных и других стандартных изделий.
  • Обозначение материалов
  •  

    КОМПЛЕКСНЫЙ ЧЕРТЕЖ НА ПРИМЕРЕ ИЗОБРАЖЕНИЯ ТОЧКИ

    Геометрический аппарат проецирования и метод Г. Монжа получения обратимых изображений

     

     В начертательной геометрии и в черчении для построения изображений в основном используется один из методов проецирования. Когда направление взгляда наблюдателя перпендикулярно к плоскости проекций, относительно которой сам наблюдатель условно находится на бесконечно удаленном расстоянии (Рис.3). Проецирующий луч   от глаза наблюдателя   проходит через точку   какой-либо фигуры в пространстве и пересекает плоскость проекций , образуя ортогональную (прямоугольную) проекцию . (Символически: ).

     Однако  – еще не чертеж. Чертеж должен читаться однозначно, то есть должен быть обратимым. В данном случае проекции  может соответствовать не только точка , но и любая точка , принадлежащая проецирующему лучу l. В итоге: , но .

     Способ получения обратимых изображений был предложен создателем начертательной геометрии как науки Гаспаром Монжем (1746-1818). Для этого оказалось достаточно: предмет спроецировать одновременно на две плоскости проекций. Например, - на две взаимно перпендикулярные плоскости: – горизонтальную и  – фронтальную плоскости проекций (Рис.4). В этом случае на лицо обратимость  и .

     

     Для усиления наглядности изображений и для решения многих геометрических задач часто приходится проецировать предмет на три плоскости: , и . Последняя из них – профильная плоскость проекций (Рис.5).

     Линии пересечения плоскостей проекций называются осями проекций. На этих осях происходит излом линий связи между отдельными проекциями точек. Звенья ломаных линий отражают расстояния точки в пространстве до соответствующих плоскостей проекций. Если оси проекций совместить с осями ортогональной системы координат , то эти расстояния примут свои численные значения. (Рис.4 и 5).

     Плоскости проекций делят пространство на 4 квадранта плоскостями  и  и на 8 октантов – тремя плоскостями (Рис.4 и 5). От положения точки в той или иной части пространства зависят знаки её координат. Например, в I-м квадранте (Рис.4) все координаты положительны, во 2-м – координата  уже отрицательна.

     Что касается положения наблюдателя относительно плоскостей проекций: место наблюдателя или в 1-м квадранте или в 1-м октанте.

     Пока мы получили только пространственные модели обратимых комплексных изображений на двух и на трех плоскостях проекций.

    Примеры решения задач по начертательной геометрии